Edit Content
Bizwit-Logo-Final

Bizwit Research & Consulting LLP is a global provider of business intelligence & consulting services. We have a strong primary base of key industry leaders along with the chain of industry analysts to analyze the market trends and its future impact in order to estimates and forecast different business segments and markets. 

Global Artificial Intelligence (AI) in Diabetes Management Market to reach USD XX billion by the end of 2029.

Global Artificial Intelligence (AI) in Diabetes Management Market Size study & Forecast, by Type (Case-based Reasoning, Intelligent Data Analysis), by Application (Glucose Monitoring Devices, Diagnostic Devices, Insulin Delivery Devices, Other Devices) and Regional Analysis, 2022-2029

Product Code: HLSHIT-62853214
Publish Date: 9-05-2023
Page: 200

Global Artificial Intelligence (AI) in Diabetes Management Market is valued approximately USD XX billion in 2021 and is anticipated to grow with a healthy growth rate of more than XX% over the forecast period 2022-2029. Artificial Intelligence (AI) in diabetes management refers to the use of advanced computing technologies, such as machine learning algorithms, to assist in the management and treatment of diabetes. The goal of AI in diabetes management is to help patients monitor and manage their blood sugar levels more effectively, reduce the risk of complications, and improve their overall quality of life. The major driving factors for the Global Artificial Intelligence (AI) in Diabetes Management Market are growing prevalence of diabetes, advancements in AI and machine learning and increasing demand for personalized healthcare. Moreover, growing adoption of wearable devices and rising advancements in AI and machine learning is creating lucrative growth opportunity for the market over the forecast period 2022-2029.

In Africa, the International Diabetes Federation (IDF) estimates that there were 19.4 million people with diabetes in 2019, and this number is expected to rise to 47 million by 2045. (Source: IDF Diabetes Atlas, 9th edition, 2019). Similarly, in South-East Asia, the IDF estimates that there were 88 million people with diabetes in 2019, and this number is expected to rise to 153 million by 2045. (Source: IDF Diabetes Atlas, 9th edition, 2019). Along with this, in the Western Pacific region, the IDF estimates that there were 159 million people with diabetes in 2019, and this number is expected to rise to 214 million by 2045. (Source: IDF Diabetes Atlas, 9th edition, 2019). However, the high cost of Artificial Intelligence (AI) in Diabetes Management stifles market growth throughout the forecast period of 2022-2029.

The key regions considered for the Global Artificial Intelligence (AI) in Diabetes Management Market study includes Asia Pacific, North America, Europe, Latin America, and Rest of the World. The North American market is the largest market for AI in diabetes management, primarily driven by the high prevalence of diabetes in the region, the availability of advanced healthcare infrastructure, and the adoption of digital technologies. The US is the largest market in North America, followed by Canada. The Asia Pacific market for AI in diabetes management is expected to grow at a significant rate, driven by factors such as the high prevalence of diabetes, increasing healthcare expenditure, and growing adoption of digital technologies. China, India, and Japan are the major markets in the Asia Pacific region.

Major market player included in this report are:
Abbott Laboratories
Medtronic
Dexcom
Glooko
Diabeloop
Bigfoot Biomedical
Beta Bionics
One Drop
Diabnext
Tidepool

Recent Developments in the Market:
Ø In May 2021, Abbott Laboratories announced that it had received FDA clearance for its AI-powered algorithm, which is designed to help people with diabetes better manage their glucose levels using the FreeStyle Libre 2 CGM system.
Ø In February 2021, Medtronic announced that it had received CE Mark approval for its AI-powered predictive insulin dosing algorithm, which is designed to help people with diabetes avoid hypoglycemia.
Ø In January 2021, Dexcom announced that it had acquired TypeZero Technologies, a company that develops AI-powered diabetes management solutions, to enhance its product offerings in the AI diabetes management space.
Ø In December 2020, Glooko announced that it had received FDA clearance for its AI-powered insulin titration solution, which is designed to help healthcare providers adjust insulin doses for people with diabetes more efficiently.
Global Artificial Intelligence (AI) in Diabetes Management Market Report Scope:
Historical Data 2019-2020-2021
Base Year for Estimation 2021
Forecast period 2022-2029
Report Coverage Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
Segments Covered Application, Type, Region
Regional Scope North America; Europe; Asia Pacific; Latin America; Rest of the World
Customization Scope Free report customization (equivalent up to 8 analyst’s working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below:
By Type:
Case-based Reasoning
Intelligent Data Analysis
By Application:
Glucose Monitoring Devices
Diagnostic Devices
Insulin Delivery Devices
Other Devices

By Region:
North America
U.S.
Canada
Europe
UK
Germany
France
Spain
Italy
ROE
Asia Pacific
China
India
Japan
Australia
South Korea
RoAPAC
Latin America
Brazil
Mexico
Rest of the World

Chapter 1. Executive Summary
1.1. Market Snapshot
1.2. Global & Segmental Market Estimates & Forecasts, 2019-2029 (USD Billion)
1.2.1. Artificial Intelligence (AI) in Diabetes Management Market, by Region, 2019-2029 (USD Billion)
1.2.2. Artificial Intelligence (AI) in Diabetes Management Market, by Type, 2019-2029 (USD Billion)
1.2.3. Artificial Intelligence (AI) in Diabetes Management Market, by Application, 2019-2029 (USD Billion)
1.3. Key Trends
1.4. Estimation Methodology
1.5. Research Assumption
Chapter 2. Global Artificial Intelligence (AI) in Diabetes Management Market Definition and Scope
2.1. Objective of the Study
2.2. Market Definition & Scope
2.2.1. Scope of the Study
2.2.2. Industry Evolution
2.3. Years Considered for the Study
2.4. Currency Conversion Rates
Chapter 3. Global Artificial Intelligence (AI) in Diabetes Management Market Dynamics
3.1. Artificial Intelligence (AI) in Diabetes Management Market Impact Analysis (2019-2029)
3.1.1. Market Drivers
3.1.1.1. Growing prevalence of diabetes
3.1.1.2. Advancements in AI and machine learning
3.1.1.3. Increasing demand for personalized healthcare
3.1.2. Market Challenges
3.1.2.1. High cost of Artificial Intelligence (AI) in Diabetes Management
3.1.3. Market Opportunities
3.1.3.1. Growing adoption of wearable devices
3.1.3.2. Advancements in AI and machine learning
Chapter 4. Global Artificial Intelligence (AI) in Diabetes Management Market Industry Analysis
4.1. Porter’s 5 Force Model
4.1.1. Bargaining Power of Suppliers
4.1.2. Bargaining Power of Buyers
4.1.3. Threat of New Entrants
4.1.4. Threat of Substitutes
4.1.5. Competitive Rivalry
4.2. Futuristic Approach to Porter’s 5 Force Model (2019-2029)
4.3. PEST Analysis
4.3.1. Political
4.3.2. Economical
4.3.3. Social
4.3.4. Technological
4.4. Investment Adoption Model
4.5. Analyst Recommendation & Conclusion
4.6. Top investment opportunity
4.7. Top winning strategies
Chapter 5. Risk Assessment: COVID-19 Impact
5.1. Assessment of the overall impact of COVID-19 on the industry
5.2. Pre COVID-19 and post COVID-19 Market scenario
Chapter 6. Global Artificial Intelligence (AI) in Diabetes Management Market, by Type
6.1. Market Snapshot
6.2. Global Artificial Intelligence (AI) in Diabetes Management Market by Type, Performance – Potential Analysis
6.3. Global Artificial Intelligence (AI) in Diabetes Management Market Estimates & Forecasts by Type 2019-2029 (USD Billion)
6.4. Artificial Intelligence (AI) in Diabetes Management Market, Sub Segment Analysis
6.4.1. Case-based Reasoning
6.4.2. Intelligent Data Analysis
Chapter 7. Global Artificial Intelligence (AI) in Diabetes Management Market, by Application
7.1. Market Snapshot
7.2. Global Artificial Intelligence (AI) in Diabetes Management Market by Application, Performance – Potential Analysis
7.3. Global Artificial Intelligence (AI) in Diabetes Management Market Estimates & Forecasts by Application 2019-2029 (USD Billion)
7.4. Artificial Intelligence (AI) in Diabetes Management Market, Sub Segment Analysis
7.4.1. Glucose Monitoring Devices
7.4.2. Diagnostic Devices
7.4.3. Insulin Delivery Devices
7.4.4. Other Devices
Chapter 8. Global Artificial Intelligence (AI) in Diabetes Management Market, Regional Analysis
8.1. Artificial Intelligence (AI) in Diabetes Management Market, Regional Market Snapshot
8.2. North America Artificial Intelligence (AI) in Diabetes Management Market
8.2.1. U.S. Artificial Intelligence (AI) in Diabetes Management Market
8.2.1.1. Type breakdown estimates & forecasts, 2019-2029
8.2.1.2. Application breakdown estimates & forecasts, 2019-2029
8.2.2. Canada Artificial Intelligence (AI) in Diabetes Management Market
8.3. Europe Artificial Intelligence (AI) in Diabetes Management Market Snapshot
8.3.1. U.K. Artificial Intelligence (AI) in Diabetes Management Market
8.3.2. Germany Artificial Intelligence (AI) in Diabetes Management Market
8.3.3. France Artificial Intelligence (AI) in Diabetes Management Market
8.3.4. Spain Artificial Intelligence (AI) in Diabetes Management Market
8.3.5. Italy Artificial Intelligence (AI) in Diabetes Management Market
8.3.6. Rest of Europe Artificial Intelligence (AI) in Diabetes Management Market
8.4. Asia-Pacific Artificial Intelligence (AI) in Diabetes Management Market Snapshot
8.4.1. China Artificial Intelligence (AI) in Diabetes Management Market
8.4.2. India Artificial Intelligence (AI) in Diabetes Management Market
8.4.3. Japan Artificial Intelligence (AI) in Diabetes Management Market
8.4.4. Australia Artificial Intelligence (AI) in Diabetes Management Market
8.4.5. South Korea Artificial Intelligence (AI) in Diabetes Management Market
8.4.6. Rest of Asia Pacific Artificial Intelligence (AI) in Diabetes Management Market
8.5. Latin America Artificial Intelligence (AI) in Diabetes Management Market Snapshot
8.5.1. Brazil Artificial Intelligence (AI) in Diabetes Management Market
8.5.2. Mexico Artificial Intelligence (AI) in Diabetes Management Market
8.6. Rest of The World Artificial Intelligence (AI) in Diabetes Management Market

Chapter 9. Competitive Intelligence
9.1. Top Market Strategies
9.2. Company Profiles
9.2.1. Abbott Laboratories
9.2.1.1. Key Information
9.2.1.2. Overview
9.2.1.3. Financial (Subject to Data Availability)
9.2.1.4. Product Summary
9.2.1.5. Recent Developments
9.2.2. Medtronic
9.2.3. Dexcom
9.2.4. Glooko
9.2.5. Diabeloop
9.2.6. Bigfoot Biomedical
9.2.7. Beta Bionics
9.2.8. One Drop
9.2.9. Diabnext
9.2.10. Tidepool
Chapter 10. Research Process
10.1. Research Process
10.1.1. Data Mining
10.1.2. Analysis
10.1.3. Market Estimation
10.1.4. Validation
10.1.5. Publishing
10.2. Research Attributes
10.3. Research Assumption

At Bizwit Research and Consultancy, we employ a thorough and iterative research methodology with the goal of minimizing discrepancies, ensuring the provision of highly accurate estimates and predictions over the forecast period. Our approach involves a combination of bottom-up and top-down strategies to effectively segment and estimate quantitative aspects of the market, utilizing our proprietary data & AI tools. Our Proprietary Tools allow us for the creation of customized models specific to the research objectives. This enables us to develop tailored statistical models and forecasting algorithms to estimate market trends, future growth, or consumer behavior. The customization enhances the accuracy and relevance of the research findings.
We are dedicated to clearly communicating the purpose and objectives of each research project in the final deliverables. Our process begins by identifying the specific problem or challenge our client wishes to address, and from there, we establish precise research questions that need to be answered. To gain a comprehensive understanding of the subject matter and identify the most relevant trends and best practices, we conduct an extensive review of existing literature, industry reports, case studies, and pertinent academic research.
Critical elements of methodology employed for all our studies include:
Data Collection:
To determine the appropriate methods of data collection based on the research objectives, we consider both primary and secondary sources. Primary data collection involves gathering information directly from various industry experts in core and related fields, original equipment manufacturers (OEMs), vendors, suppliers, technology developers, alliances, and organizations. These sources encompass all segments of the value chain within the specific industry. Through in-depth interviews, we engage with key industry participants, subject-matter experts, C-level executives of major market players, industry consultants, and other relevant experts. This allows us to obtain and validate critical qualitative and quantitative information while evaluating market prospects. AI and Big Data are instrumental in our primary research, providing us with powerful tools to collect, analyze, and derive insights from data efficiently. These technologies contribute to the advancement of research methodologies, enabling us to make data-driven decisions and uncover valuable findings.
In addition to primary sources, we extensively utilize secondary sources to enhance our research. These include directories, databases, journals focusing on related industries, company newsletters, and information portals such as Bloomberg, D&B Hoovers, and Factiva. These secondary sources enable us to identify and gather valuable information for our comprehensive, technical, market-oriented, and commercial study of the market. Additionally, we utilize AI algorithms to automate the collection of vast amounts of data from various sources such as surveys, social media platforms, online transactions, and web scraping. And employ Big Data technologies for storage and processing of large datasets, ensuring that no valuable information is missed during the data collection process.
Data Analysis:
Our team of experts carefully examine the gathered data using suitable statistical techniques and qualitative analysis methods. For quantitative analysis, we employ descriptive statistics, regression analysis, and other advanced statistical methods, depending on the characteristics of the data. This analysis may also incorporate the utilization of AI tools and big data analysis techniques to extract meaningful insights.
To ensure the accuracy and reliability of our findings, we extensively leverage data science techniques, which help us minimize discrepancies and uncertainties in our analysis. We employ Data Science to clean and preprocess the data, ensuring its quality and reliability. This involves handling missing data, removing outliers, standardizing variables, and transforming data into suitable formats for analysis. The application of data science techniques enhances our accuracy, efficiency, and depth of analysis, enabling us to stay competitive in dynamic market environments.
Market Size Estimation:
Our proprietary data tools play a crucial role in deriving our market estimates and forecasts. Each study involves the creation of a unique and customized model. The model incorporates the gathered information on market dynamics, technology landscape, application development, and pricing trends. AI techniques, such as machine learning and deep learning, aid us to analyze patterns within the data to identify correlations, trends, and relationships. By recognizing patterns in consumer behavior, purchasing habits, or market dynamics, our AI algorithms aid us in more precise estimations of market size. These factors are simultaneously analyzed within the model, allowing for a comprehensive assessment. To quantify their impact over the forecast period, correlation, regression, and time series analysis are employed.
To estimate and validate the market size, we employ both top-down and bottom-up approaches. The preference is given to a bottom-up approach, where key regional markets are analyzed as separate entities. This data is then integrated to obtain global estimates. This approach is crucial as it provides a deep understanding of the industry and helps minimize errors.
In our forecasting process, we consider various parameters such as economic tools, technological analysis, industry experience, and domain expertise. By taking all these factors into account, we strive to produce accurate and reliable market forecasts. When forecasting, we take into consideration several parameters, which include:
Market driving trends and favorable economic conditions
Restraints and challenges that are expected to be encountered during the forecast period.
Anticipated opportunities for growth and development
Technological advancements and projected developments in the market
Consumer spending trends and dynamics
Shifts in consumer preferences and behaviors.
The current state of raw materials and trends in supply versus pricing
Regulatory landscape and expected changes or developments.
The existing capacity in the market and any expected additions or expansions up to the end of the forecast period.
To assess the market impact of these parameters, we assign weights to each one and utilize weighted average analysis. This process allows us to quantify their influence on the market and derive an expected growth rate for the forecasted period. By considering these various factors and applying a weighted analysis approach, we strive to provide accurate and reliable market forecasts.
Insight Generation & Report Presentation:
After conducting the research, our experts analyze the findings in relation to the research objectives and the specific needs of the client. They generate valuable insights and recommendations that directly address the client’s business challenges. These insights are carefully connected to the research findings to provide a comprehensive understanding.
Next, we create a well-structured research report that effectively communicates the research findings, insights, and recommendations to the client. To enhance clarity and comprehension, we utilize visual aids such as charts, graphs, and tables. These visual elements are employed to present the data in an engaging and easily understandable format, ensuring that the information is accessible and visually appealing to the client. Our aim is to deliver a clear and concise report that conveys the research findings effectively and provides actionable recommendations to meet the client’s specific needs.

Need Assistance

Contact Person -
Krishant Mennon
Call us @
+ 91 99931 15879
Email: sales@bizwitresearch.com

Checkout

Why Choose Us?

Quality over Quantity

Backed by 60+ paid data sources our reports deliver crisp insights with no compromise quality.

Analyst Support

24x7 Chat Support plus
free analyst hours with every purchase

Flawless Methodology

Our 360-degree approach of market study, our research methods leave stones unturned.

Enquiry Now